1	3	21	2	41	2	61	2	81	3	101	4	121	2	141	2	161	3
2	2	22	4	42	2	62	4	82	1	102	2	122	1	142	3	162	4
3	2	23	1	43	2	63	3	83	1	103	1	123	2	143	1	163	3
4	4	24	3	44	2	64	4	84	4	104	3	124	1	144	1	164	4
5	1	25	1	45	2	65	1	85	1	105	1	125	4	145	4	165	3
6	1	26	3	46	3	66	2	86	1	106	3	126	4	146	4	166	1
7	4	27	4	47	4	67	4	87	2	107	2	127	2	147	1	167	4
8	1	28	2	48	4	68	3	88	3	108	3	128	2	148	3	168	4
9	1	29	1	49	4	69	1	89	4	109	2	129	2	149	2	169	4
10	1	30	1	50	1	70	2	90	3	110	4	130	1	150	1	170	1
11	3	31	1	51	1	71	1	91	4	111	3	131	1	151	3	171	1
12	1	32	3	52	4	72	2	92	4	112	1	132	3	152	1	172	1
13	2	33	4	53	2	73	4	93	4	113	4	133	3	153	3	173	3
14	3	34	1	54	2	74	4	94	4	114	1	134	3	154	2	174	2
15	3	35	3	55	1	75	4	95	3	115	3	135	3	155	4	175	2
16	2	36	2	56	1	76	4	96	4	116	3	136	4	156	3	176	1
17	3	37	2	57	4	77	4	97	4	117	2	137	4	157	3	177	1
18	4	38	2	58	3	78	3	98	3	118	4	138	4	158	3	178	1
19	2	39	3	59	2	79	2	99	4	119	3	139	3	159	4	179	2
20	4	40	2	60	3	80	4	100	2	120	3	140	3	160	4	180	2

PHYSICS

1. Previously, if V_{1} and V_{2} are the potentials of inner and outer shells due to won charge respectively, then

$\mathrm{V}_{1}+\mathrm{V}_{2}=3 \mathrm{~V}$
\ $\mathrm{V}_{1}+\mathrm{V}=3 \mathrm{~V}$ or $\mathrm{V}_{1}=2 \mathrm{~V}$
When outer shell is earthed, its potential becomes zero, and so potential of inner shell becomes
$V_{1}^{\prime}=2 \mathrm{~V}+0=2 \mathrm{~V}$
2. $W_{A B D}=W_{A B}+W_{B D}$

$$
\begin{aligned}
& =0+6 \times 10^{4} \times 4 \times 10^{-3} \\
& =240 \mathrm{~J} .
\end{aligned}
$$

Now, $\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
or $500+150=\Delta U+240$
\ $\Delta \mathrm{U}=410 \mathrm{~J}$.
3. In CGS system,
$\mathrm{d}=4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$
The unit of mass is 100 g and unit of length is 10 cm , so

$=\frac{4}{100} \times(10)^{3} \cdot \frac{100 \mathrm{~g}}{(10 \mathrm{~cm})^{3}}$
$=40$ unit
4. $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}}$ and $\mathrm{g}^{\prime}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}$

b $R+h=\sqrt{2} R$ or $h=(\sqrt{2}-1) R$
5. Given, $\mathrm{h}=60 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~ms}^{-2}$,

Rate of flow of water $=15 \mathrm{~kg} / \mathrm{s}$
$\$ Power of the falling water
$=15 \mathrm{kgs}^{-1} \times 10 \mathrm{~ms}^{-2} \times 60 \mathrm{~m}=900$ watt.
Loss in energy due to friction
$=9000 \times \frac{10}{100}=900 \mathrm{watt}$.
। Power generated by the turbine
$=(9000-900)$ watt $=8100$ watt $=8.1 \mathrm{~kW}$
6.

$$
\begin{aligned}
f_{1}=\mu N_{1} & =\frac{2}{5} \times 25 \times \frac{3}{5}=6 \mathrm{~N} \\
f_{2}=\mu N_{2} & =\frac{2}{5} m g= \\
= & \frac{2}{5} \times 1 \times 10 \\
& =4 \mathrm{~N}
\end{aligned}
$$

Now from Newton's second law $25 \cos \theta-\left(f_{1}+f_{2}\right)=m a$
or $25 \times \frac{4}{5}-(6+4)=1$ a
$1 \quad \mathrm{a}=10 \mathrm{~m} / \mathrm{s}^{2}$.

7. $\frac{1}{2} m v^{2}=\frac{h c}{l}-W_{0}$ or $\frac{h c}{l}=\frac{1}{2} m v^{2}+W_{0}$ and $\frac{1}{2} m v_{1}^{2}=\frac{h c}{(31 / 4)}-W_{0}$

8. Current through each bulb is same because these are connected in series.
 greater heat is produced in the 40 W bulb, it glows brightest
$H=I^{2} R t$
9. M.I. of disc about tangent in a plane $=\frac{5}{4} \mathrm{mR}^{2}=\mathrm{I}$
$\backslash \mathrm{mR}^{2}=\frac{4}{5} I$
M.I. of disc about tangent \perp to plane $I^{\prime}=\frac{3}{2} m R^{2}$

Substituting the value of $m R^{2}$ from equation (i) we get
$I^{\prime}=\frac{3}{2} \stackrel{24}{\frac{24}{⿺}} 5 \frac{\ddot{\partial}}{\stackrel{\rightharpoonup}{\grave{\emptyset}}}=\frac{6}{5} I$
10. Process $A B$ is isobasic and $B C$ is isothermal, $C D$ isochoric and DA isothermic compression.
11. Electric field lines at each point of the ball must crosses normally.
12. $\mathrm{E}=\frac{\mathrm{hc}}{\mathrm{l}}$ Р $\quad 1=\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{12.5 \times 1.6 \times 10^{-19}}$
$=993 \mathrm{~A}^{\circ}$

(where Rydberg constant, $\mathrm{R}=1.097 \times 10^{7}$)

Solving we get $\mathrm{n}_{2}=3$
Spectral lines
Total number of spectral lines $=3$
Two lines in Lyman series for $n_{1}=1, n_{2}=2$ and $n_{1}=1$, $\mathrm{n}_{2}=3$ and one is Balmer series for $\mathrm{n}_{1}=2, \mathrm{n}_{2}=3$

13. Boat covers distance of 16 km in a still water in 2 hours.
i.e., $\mathrm{v}_{\mathrm{B}}=\frac{16}{2} \mathrm{~km} / \mathrm{hr}$

Now velocity of water $\mathrm{B} \quad \mathrm{v}_{\mathrm{w}}=4 \mathrm{~km} / \mathrm{hr}$
Time taken for going upstream
$\mathrm{t}_{1}=\frac{8}{\mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{w}}}=\frac{8}{8-4}=2 \mathrm{hr}$
(As water current oppose the motion of boat)
Time taken for going down stream
$\mathrm{t}_{2}=\frac{8}{\mathrm{v}_{\mathrm{B}}+\mathrm{v}_{\mathrm{w}}}=\frac{8}{8+4}=\frac{8}{12} \mathrm{hr}$
(As water current helps the motion of boat)

14. Current in circuit $=\frac{(3-1) \mathrm{V}}{200 \mathrm{~W}}=\frac{2}{200}=0.01 \mathrm{~A}$.
15. Given $t=d^{\mathrm{a} / 2}, \mathrm{r}^{\mathrm{b} / 2}, \mathrm{~s}^{\mathrm{c} / 2}$. Substituting dimensions, we have
$(T)=\left(\mathrm{ML}^{-3}\right)^{\mathrm{a} / 2}(\mathrm{~L})^{\mathrm{b} / 2}\left(\mathrm{MT}^{-2}\right)^{\mathrm{c} / 2}$

$$
=M^{(a+c) / 2} \cdot \mathrm{~L}^{(-3 \mathrm{a} / 2+\mathrm{b} / 2)} \mathrm{T}^{-\mathrm{c}}
$$

Equating powers of L, we have,

$$
\begin{array}{r}
-\frac{3}{2} a+\frac{b}{2}=0 . \quad \text { Given } a=1 \\
\backslash \quad-\frac{3}{2}+\frac{b}{2}=0 \quad \text { or } \quad b=3
\end{array}
$$

16. Distance covered by lift is given by
$y=t^{2}$
। Acceleration of lift upwards
$=\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=\frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})=2 \mathrm{~m} / \mathrm{s}^{2}=\frac{\mathrm{g}}{5}$
Now, $T=2 \pi \sqrt{\frac{l}{g}}$
$T^{\prime}=2 \pi \sqrt{\frac{I}{g+\frac{g}{5}}}=2 p \sqrt{\frac{\mathrm{l}}{\frac{6}{5} g}}=\sqrt{\frac{5}{6}} T$.
17. Angular limit of resolution of eye, $\theta=\frac{1}{d}$, where, d is diameter of eye lens.
Also, if y is the minimum separation between two objects at distance D from eye then

$$
\theta=\frac{y}{D}
$$

P $\frac{y}{D}=\frac{1}{d}$ P $y=\frac{1 D}{d}$
Here, wavelength $\lambda=5000 \AA=5 \times 10^{-7} \mathrm{~m}$
D $=50 \mathrm{~m}$
Diameter of eye lens $=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
From eq. (1), minimum separation is

$$
y=\frac{5 \times 10^{-7} \times 50}{2 \times 10^{-3}}=12.5 \times 10^{-3} \mathrm{~m}
$$

18. The equivalent circuit is as shown in figure.

The resistance of arm AOD $(=R+R)$ is in parallel to the resistance R of arm AD.

Their effective resistance $R_{1}=\frac{2 R \times R}{2 R \times R}=\frac{2}{3} R$
The resistance of arms $A B, B C$ and $C D$ is
$R_{2}=R+\frac{2}{3} R+R=\frac{8}{3} R$
The resistance R_{1} and R_{2} are in parallel. The effective resistance between A and D is
$R_{3}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}=\frac{\frac{2}{3} R \times \frac{8}{3} R}{\frac{2}{3} R+\frac{8}{3} R}=\frac{8}{15} R$.
19. Both the charges are identical and placed symmetrically about $A B C D$. The flux crossing $A B C D$ due to each charge is
 zero.

20. C_{v} for hydrogen $=\frac{5}{2} R$
C_{V} for helium $=\frac{3 R}{2}$
C_{V} for water vapour $=\frac{6 R}{2}=3 R$
$\backslash\left(C_{v}\right)_{\text {mix }}=\frac{4 \times \frac{5}{2} R+2 \times \frac{3}{2} R+1 \times 3 R}{4+2+1}=\frac{16}{7} R$
\ $C_{p}=C_{v}+R$
$C_{p}=\frac{16}{7} R+R \quad$ or $\quad C_{p}=\frac{23}{7} R$
21. The effective circuit is shown in the figure

Now $C_{A B}=2 \times \frac{4 C \times 2 C}{4 C+2 C}=\frac{8 C}{3}$
22. Work done by tension + Work done by force (applied) + Work done by gravitational force $=$ change in kinetic energy
Work done by tension is zero

b $0+F \times A B-M g \times A C=0$

$\left[\mathrm{QAB}=1 \sin 45^{\circ}=\frac{1}{\sqrt{2}}\right.$ and

where $I=$ length of the string.]
b $F=M g(\sqrt{2}-1)$

24. Applying conservation of energy principle, we get

$$
\frac{1}{2} m k^{2} v_{e}^{2}-\frac{G M m}{R}=-\frac{G M m}{r}
$$

P $\frac{1}{2} m k^{2} \frac{2 G M}{R}-\frac{G M m}{R}=-\frac{G M m}{r}$
P $\frac{\mathrm{k}^{2}}{\mathrm{R}}-\frac{1}{\mathrm{R}}=-\frac{1}{\mathrm{r}} \mathrm{P} \frac{1}{\mathrm{r}}=\frac{1}{\mathrm{R}}-\frac{\mathrm{k}^{2}}{\mathrm{R}}$
P $\frac{1}{r}=\frac{1}{R}\left(1-k^{2}\right)$ b $r=\frac{R}{1-k^{2}}$
25. Water rises upto the top of capillary tube and stays there without overflowing.
26.

27. The self inductance of a long solenoid is given by $L=\mu_{r} \mu_{0} n^{2} A l$
Self inductance of a long solenoid is independent of the current flowing through it.
28. It means that car which is moving on a horizontal road \& the necessary centripetal force, which is provided by friction (between car \& road) is not sufficient.
If μ is friction between car and road, then max seed of safely turn on horizontal road is determined from figure.

$\mathrm{N}=\mathrm{mg}$
$f=\frac{m v^{2}}{r}$
where f is frictional force between road \& car, N is the normal reaction exerted by road on the car. We know that $\mathrm{f}=\mu_{\mathrm{s}} \mathrm{N}=\mu_{\mathrm{s}} \mathrm{mg}$
where μ_{s} is static friction
so from eqn (ii) \& (iii) we have
$\frac{m v^{2}}{r} \leq \mu_{\mathrm{s}} \mathrm{mg} \mathrm{P} \quad \mathrm{v}_{2} \leq \mu_{\mathrm{s}} \mathrm{rg} \quad$ or $\quad v \leq \sqrt{m_{\mathrm{s}} \mathrm{rg}}$
$\& v_{\text {max }}=\sqrt{m_{3} r g}$
If the speed of car is greater than $v_{\text {max }}$ at that road, then it will be thrown out from road i.e., skidding.
29. Time period of simple pendulum is given by:
$T=2 \pi \sqrt{\frac{\mathrm{l}}{g_{\text {eff }}}}$ or, $T=\frac{k}{\sqrt{g_{\text {eff }}}}$

30. Black board paint is quite approximately equal to black bodies.
31. Here, $r=6 \mathrm{~cm}=6 \times 10^{-2} \mathrm{~m}, \mathrm{~N}=20, \omega=40 \mathrm{rads}^{-1}$
$B=2 \times 10^{-2} \mathrm{~T}, \mathrm{R}=8 \Omega$
Maximum emf induced, $\varepsilon=\mathrm{NAB} \omega$
$=\mathrm{N}\left(\pi \mathrm{r}^{2}\right) \mathrm{B} \omega$
$=20 \times \pi \times\left(6 \times 10^{-2}\right) 2 \times 10^{-2} \times 40=0.18 \mathrm{~V}$
Average value of emf induced over a full cycle $\varepsilon_{\mathrm{av}}=0$
Maximum value of current in the coil.
$\mathrm{I}=\frac{\mathrm{eI}}{\mathrm{R}}=\frac{0.18}{8}=0.023 \mathrm{~A}$
Average power dissipated,
$\mathrm{P}=\frac{\mathrm{eI}}{2}=\frac{0.18 \times 0.023}{2}=2.07 \times 10^{-3} \mathrm{~W}$
32. Angle of prism $A=60^{\circ}$

By prism formula

$\frac{\sqrt{3}}{2}=\sin \frac{260^{2}+d_{m}}{2} \frac{\ddot{\partial}}{\dot{\square}}$

$60^{\circ}=\frac{60^{\circ}+\mathrm{d}_{\mathrm{m}}}{2}$ b $\delta_{\mathrm{m}}=60^{\circ}$
As we know,
$\delta_{\mathrm{m}}=2 \theta-\mathrm{A}$
$\theta=\frac{\mathrm{d}_{\mathrm{m}}+\mathrm{A}}{2}=\frac{60^{\circ}+60^{\circ}}{2}=60^{\circ}$
33. Torque on the solenoid is given by
$\tau=M B \sin \theta$
where θ is the angle between the magnetic field and the axis of solenoid.
$M=n i A$
\ $\tau=n \mathrm{ni} B \sin 30^{\circ}$

$$
\begin{aligned}
& =2000 \times 2 \times 1.5 \times 10^{-4} \times 5 \times 10^{-2} \times \frac{1}{2} \\
& =1.5 \times 10^{-2} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

34. $\mathrm{mg}=72 \mathrm{~N}$ (body weight on the surface)
$g=\frac{G M}{R^{2}}$
At a height $H=\frac{R}{2}$,

Body weight at height $H=\frac{R}{2}$,
$\mathrm{mg}^{\prime}=\mathrm{m} \times \frac{4}{9} \frac{\mathrm{GM}}{\mathrm{R}^{2}}$

$$
\begin{aligned}
& =m \times \frac{4}{9} \times g=\frac{4}{9} m g \\
& =\frac{4}{9} \times 72=32 \mathrm{~N}
\end{aligned}
$$

35. If I is the original length of wire, then change in length of first wire, $\Delta l_{1}=\left(l_{1}-I\right)$
Change in length of second wire, $\Delta l_{2}=\left(I_{2}-I\right)$
Now, $Y=\frac{T_{1}}{\mathrm{~A}} \times \frac{\mathrm{I}}{\mathrm{Dl}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~A}} \times \frac{\mathrm{l}}{\mathrm{Dl}_{2}}$
or $\frac{T_{1}}{D l_{1}}=\frac{T_{2}}{D I_{2}}$ or $\frac{T_{1}}{I_{1}-l}=\frac{T_{2}}{I_{2}-l}$
or $T_{1} l_{2}-T_{1} I=T_{2} l_{1}-I T_{2}$ or $I=\frac{T_{2} l_{1}-T_{1} l_{2}}{T_{2}-T_{1}}$
36. $\mathrm{Q}_{\mathrm{a}}=\Delta \mathrm{U}+0=\Delta \mathrm{U}$
and $Q_{b}=\Delta U+P \Delta V$
As $\mathrm{Q}_{b}>\mathrm{Q}_{a}, \backslash$ Change in entropy is greater in case (2).
37. According to the principal of circular motion in a magnetic field

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{m}} \mathrm{P} \quad \frac{\mathrm{mv}}{\mathrm{R}} \mathrm{R}=\mathrm{qVB} \\
& \mathrm{P} \mathrm{R}=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{\mathrm{P}}{\mathrm{qB}}=\frac{\sqrt{2 m \cdot \mathrm{k}}}{\mathrm{qB}} \\
& \mathrm{R}_{\alpha}=\frac{\sqrt{2(4 m) \mathrm{K}^{\prime}}}{2 \mathrm{qB}} \\
& \frac{\mathrm{R}}{\mathrm{R}_{\mathrm{a}}}=\sqrt{\frac{\mathrm{K}}{\mathrm{~K}^{\prime}}} \\
& \text { but } \quad \mathrm{R}=\mathrm{R}_{\alpha} \text { (given) } \\
& \text { Thus } \mathrm{K}=\mathrm{K}^{\prime}=1 \mathrm{MeV}
\end{aligned}
$$

38. Rate of flow of liquid $V=\frac{P}{R}$
where liquid resistance $R=\frac{8 \mathrm{hl}}{\mathrm{pr}^{4}}$
For another tube liquid resistance;

For the series combination
$V_{\text {New }}=\frac{P}{R+R^{\prime}}=\frac{P}{R+16 R}=\frac{P}{17 R}=\frac{V}{17}$
39. The distance of object from mirror $=15+\frac{33.25}{4}$ $x 3=39.93 \mathrm{~cm}$
Distance of image from mirror $=15+\frac{25 \times 3}{4}=33.75 \mathrm{~cm}$ Using mirror formula,

$$
\begin{aligned}
& \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
& \text { or } \frac{1}{-33.93}+\frac{1}{-33.75}=\frac{1}{f} \\
& f=-18.3 \mathrm{~cm}
\end{aligned}
$$

40. Rate of cooling of a body $R=\frac{D q}{t}=\frac{\operatorname{Aes}\left(T^{4}-T_{0}^{4}\right)}{m c}$

P $\mathrm{R} \mu \frac{\mathrm{A}}{\mathrm{m}} \mu \frac{\text { Area }}{\text { Volume }} \quad[\mathrm{m}=\rho \times \mathrm{V}]$
b For the same surface area. $\mathrm{R} \mu \frac{1}{\text { Volume }}$
Q Volume of cube < Volume of sphere
P $R_{\text {cube }}>R_{\text {sphere }}$ i.e., cube, cools down with faster rate.
41. Let a current I be flowing in the loop $A B C$ in the direction shown in the figure. If the length of each of the sides $A B$ and $B C$ be x then
$\left|\begin{array}{rl}\mathrm{r} \\ F\end{array}\right|=\mathrm{i} \times \mathrm{B}$

where B is the magnitude of the magnetic force.
The direction of $\stackrel{1}{\mathrm{~F}}$ will be in the direction perpendicular to the plane of the paper and going into it.
By Pythagorus theorem,
$A C=\sqrt{x^{2}+x^{2}}=\sqrt{2} x$
I Magnitude of force on AC
$=\mathrm{i} \sqrt{2} \times B \sin 45^{\circ}$
$=\mathrm{i} \sqrt{2} \times B \times \frac{1}{\sqrt{2}}$
$=\mathrm{i} \times \mathrm{B}=\left|\frac{\mathrm{r}}{\mathrm{F}}\right|$
The direction of the force on $A C$ is perpendicular to the plane of the paper and going out of it. Hence, force on $A C=-\frac{I}{F}$
42. A nucleus is denoted by ${ }_{z} X^{A}$

An isotope should have same Z.
α-particle $={ }_{2} \mathrm{He}^{4} ; \beta$-particle $={ }_{-1} \mathrm{~b}^{0}$
The emission of one α particle and the emission of two β particles maintain the Z same.
Hence, for isotope formation 2β particles and one α particle are emitted.
43. Fundamental frequency of closed organ pipe

$$
V_{c}=\frac{V}{4 I_{c}}
$$

Fundamental frequency of open organ pipe

$$
\mathrm{V}_{0}=\frac{\mathrm{V}}{2 \mathrm{I}_{0}}
$$

Second overtone frequency of open organ pipe $=\frac{3 \mathrm{~V}}{2 \mathrm{I}_{0}}$
From question,
$\frac{\mathrm{V}}{4 \mathrm{l}_{\mathrm{c}}}=\frac{3 \mathrm{~V}}{2 \mathrm{l}_{0}}$
b $\mathrm{I}_{0}=6 \mathrm{I}_{\mathrm{c}}=6 \times 20=120 \mathrm{~cm}$
44. If a body slides down, then the force of friction acts towards along the plane weight (mg) act vertically downwards.
45. Forward bias opposes the potential barrier and if the applied voltage is more than knee voltage it cancels the potential barrier.

CHEMISTRY

46. This is Avagadro's hypothesis.

According to this, equal volume of all gases contain equal no. of molecules under similar condition of temperature and pressure.
47. $\mathrm{Q}=\mathrm{mxL}$
where, $L=$ latent heat of vapourisation of water

$$
\begin{aligned}
& =2260 \mathrm{~kJ} / \mathrm{kg} \\
& =2260 \times 10^{3} \mathrm{~J} / \mathrm{kg} \\
& \mathrm{Q}=70 \times 10^{-3} \times 2260 \times 10^{3}=1,58,200 \text { Joule }
\end{aligned}
$$

48. Nil
49. Oxidation state of Ti in the given compounds as follows:

TiO_{2}	-	+2
TiO_{2}	-	+4
$\mathrm{~K}_{2} \mathrm{TiF}_{6}$	-	+4
$\mathrm{~K}_{2} \mathrm{TiO}_{4}$	-	+6

The oxidation states exhibited by Ti is $+2,+3,+4$. So $\mathrm{K}_{2} \mathrm{TiO}_{4}$ does not exist.
50. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}^{3 / 4} \underset{\text { Isobuty }}{\mathrm{HBr}_{3}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$

Isobutylene Isobutyl bromide
Note that, here HBr is added in anti-Markownikoff's manner, so reaction should take place in presence of peroxide. Hydroquinone and diphenylamine are not freeradical producing substances but scavengers.
51. The sequence of bases in mRNA are read in a serial order in groups of three at a time. Each triplet of nucleotides (having a specific sequence of bases) is known as codon. Each codon specifies one amino acid. Further since, there are four bases, therefore, $4^{3}=64$ triplets or codons are possible.
52. In $\mathrm{FeS}_{2}, \mathrm{Fe}^{2+}$ is converting into Fe^{3+} and sulphur is changing from -1 oxidation state to +4 oxidation state. There are two S^{-}and one Fe^{2+} in FeS_{2}. Thus total no. of electrons lost in the given reaction are 11.
53. $2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2}(\mathbb{R}) \mathrm{Al}_{2} \mathrm{O}_{3}, \Delta \mathrm{H}=-1596 \mathrm{~kJ}$
$2 \mathrm{Cr}+\frac{3}{2} \mathrm{O}_{2}\left({ }^{(R)} \mathrm{Cr}_{2} \mathrm{O}_{3}, \Delta \mathrm{H}=-1134 \mathrm{~kJ}\right.$
By (i) - (ii)
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3}$ (®) $2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}, \Delta \mathrm{H}=-462 \mathrm{~kJ}$.
54. It is an example of concentration cell, $\mathrm{E}_{\text {cell }}$ cannot be zero since $\left[\mathrm{H}^{+}\right]$are different $\left(\mathrm{HCl}\right.$ is strong and $\mathrm{CH}_{3} \mathrm{COOH}$ weak acid).
55. CaO is basic as if form strong base $\mathrm{Ca}(\mathrm{OH})_{2}$ on reaction with water.

$$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \quad 3 / 43 / 4 \mathbb{R} \mathrm{Ca}(\mathrm{OH})_{2}
$$

CO_{2} is acidic as it dissolve in water forming unstable carbonic acid.

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}^{3 / 4} 3 / 4 \mathbb{R} \mathrm{H}_{2} \mathrm{CO}_{3}
$$

Silica $\left(\mathrm{SiO}_{2}\right)$ is insoluble in water and acts as a very weak acid.
SnO_{2} is amphoteric as it reacts with both acid and base.

$$
\begin{aligned}
& \mathrm{SnO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4}^{3 / 4} 4 / 4 ® \mathrm{Sn}\left(\mathrm{SO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{SnO}_{2}+2 \mathrm{KOH} 3 / 4 / 4 ® \mathrm{~K}_{2} \mathrm{SnO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

56. A) Sulphuric acid
(iv) Contact process
B) Steel
(ii) Bessemer's process
C) Sodium hydroxide
(iii) Leblanc process
D) Ammonia
(i) Haber's process
57. Nil
58. Nil
59. Forward reaction is favoured by removal of products.
60. Reaction rate $=k[A]^{2}[B]$

Now increase conc. of A by three times and conc. of B by two times. Then new rate
$\mathrm{R}_{2}=\mathrm{k}[3 \mathrm{~A}]^{2}[2 \mathrm{~B}]$
$\frac{R_{1}}{R_{2}}=\frac{k[A]^{2}[B]}{k[3 A]^{2}[2 B]}=\frac{1}{3^{2}} \times \frac{1}{2}=\frac{1}{18}$
$\mathrm{R}_{2}=18 \times \mathrm{R}_{1}$
Hence rate increases by 18 times.
61. Since the leaving group breaks away as a base, it is easier to displace weaker bases as compared to stronger bases. Thus less basic the substituent, the more easily it is displaced.
Since the basic strength of the given groups is in order.
$\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}$
Thus the order of halogen leaving groups is $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}$
62. Nil
63. Electrolytic reduction of nitrobenzene in weakly acidic medium gives aniline, whereas in strongly acidic medium it gives p -hydroxyaniline.

65.

66. After every 30 minutes the amount is reduced to $\frac{1}{2}$ therefore $t_{1 / 2}$ is 30 minutes. In 90 minutes the amount is reduced to $\frac{1}{8}$ i.e. $\frac{1}{2^{n}}$. Here $n=3$. True for $1^{\text {st }}$ order reaction.
67.

$$
\begin{gathered}
\mathrm{H} \stackrel{\sigma}{-} \mathrm{C} \stackrel{\sigma}{\pi} \underset{\mid \sigma}{\mathrm{C}} \frac{\sigma}{\mathrm{H}} \\
\mathrm{H} \mathrm{H}
\end{gathered}
$$

68. $(4 n+2) \pi$ electrons and planar structure are the essential conditions for aromaticity.
69. Normally NaBH_{4} as well as LiAlH_{4} reduce only - CHO group without effecting carbon-carbon double bond, however when it is present in conjugation with benzene ring and aldehydic group it is also reduced along with the reduction of -CHO group.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCHO} 3 / 4 / 4 \mathrm{y}_{4} \mathrm{~B} / 4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
70. Nil
71. It is due to movement of energized electrons ($K E \mu \mathrm{~T}$).
72. Nil
73. Nil
74. He_{2} Bond order $=\frac{1}{2}(2-2)=0$. Hence cannot be formed.
75. Interstitial compounds of transition metal exhibit metallic conductivity.
76. The drugs which act on the central nervous system and help in reducing anxiety are called tranquilizers.
77. Colligative properties depends upon the no. of particles. Since methanol is non electrolyte hence cannot be considered.
78. Nil
79. Aryl halides are less reactive towards nucleophilic substitution because of the partial double bond character of carbon-halogen bonds. It is also partly due to repulsion between the electron cloud of the benzene ring and nucleophile.
80. Pressure exerted by the gas, $P=\frac{1}{3} \frac{m n u^{2}}{V}$

Here, $u=$ root mean square velocity
$m=$ mass of a molecule, $n=$ No. of molecules of the gas Hence (a) \& (b) are clearly wrong.
Again $u^{2}=\frac{3 R T}{M} \quad$ [explained from (1)]
Here, $\mathrm{M}=$ Molecular wt. of the gas;
Hence (c) is wrong
Further, Average K.E. $=\frac{3}{2}$ KT; Hence (D) is true.
81. As MgO is a weak base hence some energy got consumed to break MgO (s). Hence enthalpy is less than -57.33 kJ mol^{-1}.
82. Smaller the charge on anion, lesser will be its coagulating power.
I KBr have Br^{-}with least charge of -1 on Br thus KBr is least effective in coagulating $\mathrm{Fe}(\mathrm{OH})_{3}$.
83. Calcium and magnesium form complexes with EDTA.
84. Since Sc^{3+} does not contain any unpaired electron it is colourless in water.
85. ABS is acrylonitrile-butadiene-styrene rubber which is obtained by copolymerization of acrylonitrile, 1, 3butadiene and styrene.

ABS nubber
86. Cl_{2} is obtained by electrolysis of (aqueous) NaCl .
87. Stability of an alkene depends upon the heat of hydrogenation of an alkene. The lower the heat of hydrogenation of an alkene higher will be stability.
Order of stability Heat of hydrogenation ($\mathrm{kJ} / \mathrm{mol}$)
trans-2-butene 115.5
cis-2-butene 119.6 and
1-butene
126.8
88. Nil
89. We can distinguish between formic acid and acetic acid by their action on Fehling's solution. Formic acid gives a red ppt of cuprous oxide but acetic acid does not give red ppt.
90. In presence of non-protic solvent such as CHCl_{3} or CCl_{4}, concentration of electrophile (Br^{+}) is less, hence reaction stops at the monobromo stage.

